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There is currently no widely accepted standard method to determine whether 
gerrymandering has occurred. To determine a cutoff for unreasonable gerry-
mandering, simulating collections of districting plans in the absence of partisan 
bias has been proposed. In simulation-based methods, real-world election out-
comes are compared to results from simulated districting plans. Here, a simu-
lation method that creates possible districts in continuous space is proposed. 
Existing methods use preliminary spatial discretization of the state to perform 
simulations. This spatial discretization can result in biased estimates, which 
could lead to inaccurate conclusions regarding gerrymandering. We use our 
continuous-space method to analyze the political districts in Pennsylvania. All 
of our simulated elections result in fewer than 13 Republican seats, indicating 
that the districting plan used in Pennsylvania prior to 2018 was likely gerryman-
dered. This finding agrees with and confirms the results of simulation-based dis-
crete-space gerrymandering studies without the presence of discretization bias.

Introduction

The term “gerrymandering” was coined in 1812, named after Massachusetts 
Governor Elbridge Gerry. Gerry, using an unconventional method of redraw-
ing congressional district lines, concocted a plan so that his party, which was 
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a statewide minority, held 29 out of the 40 congressional seats. Due to the 
strange shape of the district plan, which resembled that of a salamander, his 
opponents and the media dubbed the district plan “the gerrymander.” Simply 
put, gerrymandering is the process of intentionally drawing district boundar-
ies to grant a political advantage. The question considered here is: how much 
gerrymandering is considered “too much”? First, we briefly discuss the legal 
grounding behind gerrymandering in the United States.

Davis v. Bandemer (1986) was a case brought before the U.S. Supreme 
Court to question partisan gerrymandering in Indiana. The court could not 
define a standard in the case, which gave way to the later case of Vieth v. Jube-
lirer (2004). That being said, Davis v. Bandemer did establish the legal prec-
edent that racial gerrymandering would be unconstitutional under the Equal 
Protection Clause as stated by the court: “Racial gerrymandering claims are 
justiciable because of the greater warrant the Equal Protection Clause gives 
the federal courts to intervene for protection against racial discrimination.”

Vieth v. Jubelirer (2004) serves as additional background to the legality 
of gerrymandering in the United States. The case was filed in federal district 
court in Pennsylvania on the grounds that the U.S. House districts granted 
unfair political advantage to the Republican Party by giving them control 
of a majority of the congressional seats with a minority of registered voters. 
Vieth’s lawyers argued that the map was a violation of equal protection under 
the 14th amendment and violated Article I of the Constitution. The United 
States Supreme Court ruled against Vieth, noting that there was no objec-
tive method for ruling on matters of gerrymandering or for determining if 
gerrymandering was significant. Their reasoning was that there is no exist-
ing standard for “adjudicating political gerrymandering claims.” However, 
the court did note that in the future, given more evidence—such as some 
quantitative metric—they would be willing to rule on matters of partisan 
gerrymandering to determine if a districting plan had indeed crossed the 
proverbial line.

Currently, redrawing congressional district lines to grant one’s own 
party a political advantage is generally acceptable, as seen in Vieth v. Jubelirer 
and Davis v. Bandemer. However, along with the claim that partisan gerry-
mandering is acceptable come some caveats. A district plan may be rejected 
if it displaces or separates “special interest groups,” preventing them from 
having a voice in the political process. Special interest groups are simply 
groups of underrepresented people, such as minority groups, who would be 
disproportionately harmed if broken up in districting plans. Gill v. Whit-
ford (2017) was a case born out of the 2011 redistricting plan in Wisconsin. 
The plan was created under the direction of the Republican Party and thus 
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appeared to be drawn to give Republican voters a disproportionate amount 
of representation.

In League of Women Voters v. Commonwealth (2018), the Pennsylvania 
Supreme Court decided that the existing Pennsylvania districting plan was 
unconstitutional under the state’s constitutional guarantee of “free and equal” 
elections. The ruling called for “a process assuring that a redistricting plan 
would be in place for the 2018 elections.” Following the ruling, the Pennsylva-
nia Supreme Court implemented a new districting plan to replace the previous 
Republican plan that the court had found to be gerrymandered. This new 
districting plan was used during the 2018 election, resulting in 9 Republican 
seats (compared to 13 Republican seats in the previous election).

Since the League of Women Voters decision, the most notable gerry-
mandering case has been Rucho v. Common Cause (2019). On June 27, 2019, 
the U.S. Supreme Court rendered a long-awaited decision which settled the 
constitutionality of gerrymandering as it pertains to the role of the U.S. 
Supreme Court. In a 5–4 decision, Chief Justice Roberts stated that the court 
“conclude[d] that partisan gerrymandering claims present political questions 
beyond the reach of the federal courts.” However, this opinion was not shared 
by all members of the court. In a lengthy dissent, Justice Kagan asserted that 
democracy will indeed suffer as a result of the court’s decision. She continued 
by saying, “the practices challenged in these cases imperil our system of gov-
ernment. . . . None is more important than free and fair elections.” Kagan’s 
dissent underscores the importance and clear ramifications of extreme ger-
rymandering. Gerrymandering has the ability to shape election outcomes but, 
more importantly, allows the party in control to abuse its power and main-
tain control without fear of losing reelection. The court’s decision, however, 
boiled down to one major argument: is it constitutional for courts to weigh in 
on issues surrounding gerrymandering? Ultimately, the court decided that it 
was not. The Chief Justice wrote later in his opinion that “there are no legal 
standards discernible in the Constitution for making such judgments.  .  .  . 
Federal judges have no license to reallocate political power between the two 
major political parties . . . [with] no legal standards to limit and direct their 
decisions.”

The decision by the court has grave consequences for lawmakers and vot-
ers around the country. Gerrymandering is a matter that can no longer be 
handled in the Supreme Court. As such, it is up to the populace to ensure 
that their representatives are engaging in fair election practices. This is par-
ticularly relevant to Pennsylvania voters since the 2020 census triggered a 
new districting plan in Pennsylvania in 2021. By using tools to determine the 
degree of partisanship of redistricting lines (such as the algorithms described 
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below), voters will, with a degree of statistical certainty, understand the degree 
to which their representatives have manipulated the borders for their political 
gain.

Mathematical and Statistical Methods  
for Measuring Gerrymandering

Gerrymandering can be extremely difficult to measure due to complex geo-
graphic and cultural features. One of the primary difficulties in regulating 
gerrymandering is the inability to assess whether gerrymandering has actu-
ally occurred. In previous cases, judges have noted the lack of any manageable 
standard of measurement for gerrymandering (Wang 2016). In an attempt to 
overcome this difficulty, many methods for testing for and measuring gerry-
mandering have been proposed. Examples of some of these methods include 
mathematical measures (Chambers and Miller 2010; Dube and Clark 2016; 
Fan et al. 2015; Hodge, Marshall, and Patterson 2010; Powell, Dube, and Clark 
2017), statistical tests (Wang 2016), and simulation-based techniques (Ban-
gia et al. 2017; Chen and Cottrell 2016; Duchin 2018; Magelby and Mosesson 
2018; Powell, Clark, and Dube 2015). This section provides a brief summary of 
several mathematical and statistical methods for measuring gerrymandering.

One common mathematical measure used to assess gerrymandering is the 
compactness of a shape. In informal terms, a shape is compact if the average 
distance between spatial locations within the shape is minimized. Thus, in a 
mathematical sense, a circle is the most compact shape. Irregular and elon-
gated shapes tend to be less compact. Therefore, irregular districts (which may 
be the result of gerrymandering) tend to be less compact than more regularly 
shaped districts.

Although there is no one recognized measure for the compactness of a 
shape, various compactness measures can be used to explore district patterns. 
For example, Fan et al. (2015) used both shape-based compactness measures 
and inertia-based compactness measures to analyze changes in compactness 
in California and North Carolina. Dube and Clark (2016) used graph com-
pactness to assess the level of gerrymandering, which allows for weighting 
to adjust for population size of different areas. The inertia-based methods of 
Fan et al. (2015) were adjusted to account for spatial population distributions. 
Powell, Clark, and Dube (2017) used an alternative measure that considers 
the length of the district borders to measure the compactness of political dis-
tricting plans. Simulation methods were then used to compare the measured 
compactness of actual plans to simulated district plans. Further details on 
geographic measures of compactness can be found in MacEachren (1985).
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A similar mathematical measure that can be used to measure the “irregu-
larity” of a shape is convexity. A shape is considered convex if, for any two 
points located within the shape, the shortest path between those two points 
lies entirely within the shape. In geographic terms for a political district, a 
district is convex if one can travel in a straight line between any two points in 
that district without leaving the district. Strict convexity, however, is a diffi-
cult measure to use because it is binary. Either a districting plan is convex or it 
is not. Chambers and Miller (2010) presented a more flexible measure of con-
vexity that uses the probability that the line between any two points within 
a district lies entirely within that district. The resulting value, the convexity 
coefficient, is a number between zero and one that indicates how convex a 
shape is. Hodge, Marshall, and Patterson (2010) simplified and adjusted this 
measure and applied the method to U.S. congressional districts. To facili-
tate computation, Monte Carlo simulation was used to estimate the convexity 
coefficient.

Various tests based on traditional statistical methods have also been pro-
posed. For example, three different statistical tests for gerrymandering were 
presented in Wang (2016). The first test involved a simulation-based measure 
to estimate a reasonable national districting norm. The election results in 
a particular state were compared to the distribution of results drawn from 
random samples of national district outcomes in an election. If the state’s 
results were too extreme compared to the simulated distribution of outcomes, 
the state was deemed to be gerrymandered. Wang’s (2016) second test used a 
t-test to compare the winning vote shares for the districts won by each of the 
parties. If the difference in mean votes for the two parties was statistically 
significant, this may have indicated partisan gerrymandering, which it did in 
Wisconsin and Maryland in Wang’s test. For a third test, the reliable wins test, 
either the mean-median test for vote share or a comparison of the standard 
deviations of the vote shares for the two parties in the respective winning 
districts were compared.

The efficiency gap proposed by Stephanopoulos and McGhee (2015) is 
a relatively simple measure that can also be useful in determining whether 
a district plan is gerrymandered. The efficiency gap is obtained by the dif-
ference of the party’s wasted votes divided by the total votes cast in the elec-
tion. Stephanopoulos and McGhee (2015) define wasted votes as those “that 
don’t contribute to victory for candidates, and they come in two forms: lost 
votes cast for candidates who are defeated, and surplus votes cast for winning 
candidates but in excess of what they needed to prevail.” The efficiency gap 
has several advantages compared to others that have been proposed (Stepha-
nopoulos and McGhee 2018). However, several f laws have been noted. For 
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example, the efficiency gap threshold for “too extreme” a gap is arbitrary and 
may yield different results in geographically diverse states (Chambers, Miller, 
and Sobel 2017). In addition, political parties can still successfully gerryman-
der a state’s political districts without violating the efficiency gap criteria 
(Cover 2017). Using some clever, rather simple mathematics, it can be seen 
that a completely non-gerrymandered state can actually fail the efficiency gap 
test. If voters for a political party are densely packed and clustered into urban 
areas, that party might waste more votes in this state simply due to the spatial 
distribution of their voters. This would result in a large efficiency gap even if 
no gerrymandering had taken place.

The measures described above provide useful information on gerryman-
dering, but often they do not account for the relationship between spatial loca-
tion and the registered political affiliation of voters. A state that has not been 
gerrymandered may be deemed as gerrymandered solely based on the spatial 
distribution of a political party’s registered voters. Simulation-based meth-
ods provide a tool for automatically accounting for the spatial dependence of 
voter’s political affiliation. Several methods presented above involve Monte 
Carlo simulation for estimation and comparison of measures (Chambers and 
Miller 2010; Hodge, Marshall, and Patterson 2010; Powell, Clark, and Dube 
2017; Wang 2016). Further, various methods entirely based on simulation have 
been proposed. The “simulation-based” concept involves generating random 
district plans from a hypothetical collection of all possible districting plans. 
This method is complicated by the difficulty in defining which districting 
plans should be included in this hypothetical collection. This method, how-
ever, is very useful because it automatically incorporates the specific features 
of the particular state of interest (Duchin 2018).

Various methods have been proposed to generate random districting 
plans in the absence of gerrymandering. These random nonpartisan plans 
are then used as a benchmark to assess gerrymandering in various states. 
Powell, Clark, and Dube (2015) constructed random districting plans using 
census tracks as the building blocks. The randomly generated districts were 
combined with demographic information on a census-block level to predict 
election outcomes. Chen and Cottrell (2016) used a similar method based on 
a grid of “similarly populated polygons” within any particular state. Linear 
regression models in real-world districting plans were compared to those with 
gerrymandered elections to assess the level of gerrymandering for each state. 
Bangia et al. (2017) also generated random districts in the absence of partisan 
gerrymandering using discrete spatial regions in the state of North Carolina. 
In their method, Voter Tabulation Districts (VTDs) were randomly grouped 
into 13 congressional districts. The vote counts in each of the VTDs were used 
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to simulate elections in the absence of gerrymandering and compared to the 
real-world election results. They found that the number of seats in 2012 and 
2016 were not typical election outcomes in non-gerrymandered redistrict-
ings. In addition, Magelby and Mosesson (2018) described a computationally 
efficient approach to simulating random districting plans using graph-parti-
tioning algorithms. They tested their algorithm on Mississippi, Virginia, and 
Texas and found all three states were likely gerrymandered.

Although simulation methods show promise for measuring gerryman-
dering across diverse geographic and demographic regions, one drawback of 
existing methods is the use of discrete spatial blocks. Whenever continuous 
space is split into discrete blocks, bias can be introduced. Changing the size 
and shape of the discrete blocks can have a significant impact on the result 
of the analysis (Aster, Borchers, and Thurber 2012). In addition, selecting the 
discrete block structure can be a challenging problem (Kotsiantis and Kanel-
lopoulos 2006). In the case of the existing simulation methods described 
above, the discrete blocks are selected based on the available data. This can 
make it difficult to assess the impact or possible bias of the preliminary spa-
tial divisions that are used. When analyzing districting plans, this bias could 
result in incorrect classifications for gerrymandered and non-gerrymandered 
states and inconsistent results across different methods of discretization. The 
Center for Range Voting (Smith and Kok 2005) describes one method of par-
titioning space, the shortest-splitline algorithm (Smith and Ryan 2007), which 
produces one particular redistricting plan with the goal of avoiding partisan 
gerrymandering. We propose a novel method for measuring gerrymander-
ing by constructing random districting plans in continuous space. Although 
these simulations in continuous space are generally more complex, they pro-
vide an unbiased tool for assessing gerrymandering.

Describing the Data Set

In Pennsylvania, voter registration information is available through the Com-
monwealth’s Department of State (https://www.pavoterservices.pa.gov/). The 
data include sex, birthdate, address, political party, and the date last voted. 
To perform our analysis, the spatial location of each individual, rather than 
the address, is needed. Geocoding is used to convert addresses to coordinates 
in latitude and longitude. We used “geocodio” (https://geocod.io/) to convert 
our data.

One difficulty in obtaining the spatial coordinates was the large size of 
the initial data set, which consists of every registered voter in Pennsylva-
nia. To minimize set-up cost and computational burden for the probabilistic 
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algorithm, a random sample of 10,400 registered voters was selected. Of the 
10,400 registered voters, 47.3% were registered with the Democratic Party, 
38.7% were registered with the Republican Party, and the remaining 13.9% 
were not registered with either of the two major political parties. To gain a 
better understanding of the data, a kernel density estimate of voter locations 
was plotted over the area of Pennsylvania. The kernel density estimate was 
calculated using the base stats package in R (Ihaka and Gentleman 1996). 
The plot for voter density is given in Figure 1. In the plot, the dark regions 
indicate high population density, and the light regions indicate low population 
density. The plot reveals the uneven population distribution across the state, 
as two cities with high population density, Philadelphia and Pittsburgh, are 
apparent. This illustrates that our sample reflects the population distribution 
of registered voters in Pennsylvania.

Method Overview

This section provides an overview of the algorithm we use to simulate dis-
tricting plans in continuous space. The simulated districting plans are used to 
conduct a randomization test for partisan gerrymandering in Pennsylvania. 
In general, a randomization test uses a random simulation to assess a claim. 
Several simulated outcomes are generated, assuming some property is true. 
The outcomes from simulated trials are compared to actual data. If the actual 
data is significantly different from the simulated outcomes, the original prop-
erty that was assumed must be incorrect. For example, I may want to test the 

Figure 1. Pennsylvania Population Density. (Source: Compiled by the authors using data from the 
Pennsylvania Department of State.)
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claim that a coin is even (the probability of heads is equal to 0.5). To test this 
claim I could flip the coin 10 times. To generate the simulated outcomes in 
this example, I would flip a fair coin 10 times (with probability of heads equal 
to 0.5), record the number of heads out of the 10 flips, and repeat many times. 
If the outcome from our original coin flip (e.g., 9 heads) is significantly differ-
ent than the simulated outcomes using the fair coin (e.g., a range of anywhere 
from 2 to 8 heads), I can reject the assumption that the original coin is fair.

Our goal is to simulate elections in the absence of gerrymandering. To do 
so, we split the state into 18 congressional districts using a random algorithm 
that does not consider political party. This is done using statistical point pro-
cesses and spatial tessellations (see Appendixes 1 and 2 for additional details). 
The algorithm is computationally expensive due to the fact that an accep-
tance-rejection probabilistic algorithm is used to generate simulated districts 
that account for the congressional districting criteria of equal population and 
contiguity (see Appendixes 3 and 4 for additional details on generating dis-
tricting plans that meet the requirements). Once the 18 random congressional 
districts are specified, logistic regression is used to predict voter turnout in 
a simulated election. The political affiliations and results of recent elections 
are used to generate the vote totals for the two major political parties in the 
simulated election. The results of the simulated election can then be compared 
to the observed results in a recent election.

Generating a Random Districting Plan  
in the Absence of Gerrymandering

To generate a single realization of a potential districting plan in the absence 
of gerrymandering, we use four steps:

1.	 Randomly generate points across the entire state. These points will 
serve as “bases” to which all of the land in the state can be assigned. 
To generate random points, an inhomogeneous Poisson point pro-
cess is used. An inhomogeneous Poisson point process is a collec-
tion of random dots in space where the dots are not necessarily 
evenly distributed. This allows us to account for the varying popu-
lation density across Pennsylvania. More details on an inhomoge-
neous point process are in Appendix 1.

2.	 Assign every point in space in the region (all of the land in the state) 
to one of the “bases” generated in step 1. This is done using a Vor-
onoi tessellation on the point locations from step 1 to cut up the 
state into “tiles.” A Voronoi tessellation is a mathematical tool to 
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divide a plane (in this case the land in Pennsylvania) into smaller 
tiles. See Appendix 2 for more details on Voronoi tessellation.

3.	 Once we have a large collection of tiles, each tile is assigned to one of 
the 18 districts. This is done using a random number generator and 
an assignment algorithm. More details on assigning the tiles to the 
18 districts are in Appendix 3.

4.	 Randomly shuffle individual tiles between adjacent districts until the 
specified districting criteria are met. An accept-reject algorithm is 
used to control the shuffling of the tiles. More details on the accept-
reject algorithm are in Appendix 4.

Steps 1 and 2 in this method consist of a novel technique for randomly 
splitting up continuous space in the state rather than using predefined dis-
crete spatial regions such as VTDs or census blocks. Steps 3 and 4 are similar 
in concept to the method used by Magelby and Mosessson (2018) which used 
existing census blocks. In our method, since the tiles that form the basis for 
the random districting plan are randomly generated in steps 1 and 2, any 
potential bias introduced by preliminary discretization using preexisting 
blocks is avoided.

Simulating an Election

The random districting plan in the absence of gerrymandering is then used 
to simulate an election. The first step in simulating an election is determining 
which of the registered voters will vote. A logistic regression model is used to 
predict voter behavior. The data set contains the election in which each voter 
most recently voted. This variable is converted to either 0 or 1 depending 
on whether or not each particular individual voted in the 2016 Pennsylva-
nia general election. Each registered voter’s gender, political party, age, and 
county are used to predict voter turnout. One weakness of this method is that 
it assumes behavior is the same across elections. Further work could improve 
this model, but selecting alternative voter turnout prediction models had a 
minimal impact on the simulation results.

Finally, after determining who will vote in the simulated election, we cal-
culate which political party will win in each of the 18 simulated districts. To 
do so, we determine who each voter will vote for using political affiliation. 
Voters registered as Republicans and Democrats are assigned to vote for their 
registered political party. Although voters may not always vote for candidates 
of the party in which they are registered, this is the only feasible option with 
the currently available data, since information including spatial location is 
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inherently non-anonymous and thus individual voters’ behavior in any given 
election is not available. Future work and data collection may allow for meth-
ods to predict individual voter decisions using a more accurate methodol-
ogy. To determine the votes of individuals registered without a Democratic or 
Republican affiliation, county-level voting results in the previous election are 
used. For example, if a voter registered as Independent is from Adams County, 
the proportion of votes for Republicans in that county during the most recent 
election is used as the probability that the particular individual will vote 
Republican. Next, the vote counts in each of the 18 districts are calculated 
and the winning political party in each simulated district is determined.

Results

In the 1,000 simulations, the total number of seats won by Republican can-
didates ranges from 6 to 12, with a mean of approximately 9 Republican dis-
tricts. The percentage of simulated elections with each respective number 
of Republican winners is presented in Table 1. In League of Women Voters 
v. Commonwealth (2018), the Pennsylvania Supreme Court ruled that the 
state had been gerrymandered. The prior election using the old district plan 
resulted in 13 Republican seats. All of our simulated elections generated in 
the absence of gerrymandering result in fewer than 13 Republican seats, indi-
cating that the pre-2018 Pennsylvania districting plan was significantly dif-
ferent than any of the simulated plans. In 2018, with a new court-ordered 
district map, Republican candidates won 9 districts. This matches the mean 
number of districts won by Republicans in our simulations. Thus, our simula-
tion rejects the pre-2018 map as gerrymandered, but does not reject the 2018 
redrawn map as a gerrymandered plan.

Table 1. Results from Simulated Election Results for 1,000 Non-Gerrymandered 
Pennsylvania Districting Plans

Number of Districts Won Simulated Occurrences

6 1.2%

7 9.6%

8 32.7%

9 32.5%

10 18.8%

11 4.7%

12 0.5%

Source: Created by the authors.
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These results align well with the generally accepted view that the con-
gressional districts were intentionally drawn to benefit Republican voters 
prior to 2018. The results are fairly similar to the results of Chen (Lapowski 
2018), which found that in 500 simulations, 7, 8, 9, and 10 seats were won by 
the Republican candidate 6.4%, 36.2%, 55.5%, and 2% of the time, respec-
tively. Chen’s simulations involved discrete spatial blocks whereas our results 
involved continuous space. Our more flexible districting method allowed for 
more variability in the number of seats, but the simulation results still indi-
cate that the number of seats held by Republican candidates prior to the 2018 
redistricting (13) is not in line with simulation results. The simulation can 
easily be updated and universally extended to additional states.

Discussion

We examine the prevalence of gerrymandering in Pennsylvania through 
Monte Carlo simulation. To generate the simulations, the area of Pennsylva-
nia is divided using Voronoi tessellation with the center of each tile sampled 
from an inhomogeneous Poisson point process. To ensure that each of the 
districts constitutes an approximately equal share of the population, a large 
number of tiles are generated and assigned to a particular district using an 
acceptance-rejection sampling algorithm. The vote of each individual is simu-
lated using voter registration information, and the results from the simulated 
election are compared to the current distribution of congressional seats. In 
every simulated election, the number of seats won by the Republican candi-
dates was less than the number of seats held by the Republican Party prior to 
the 2018 redistricting.

The simulation method presented here provides an extremely flexible tool 
for analyzing gerrymandering. It allows for the creation of random political 
districts in the absence of political gerrymandering. The algorithm can be 
adjusted for different districting criteria and can be updated to analyze any 
state where voter registration data is publicly available. One of the primary 
novel features of our method is the use of continuous space. Previous simula-
tion methods for assessing gerrymandering assume the state has been dis-
cretized into small blocks. Whenever a continuous space is binned into blocks 
before analysis, bias can be introduced. In addition, changing the size and 
structure of the bins that are used can lead to inconsistent results. Using our 
method, the potential bias from discretization is avoided and a wider variety of 
possible districting plans is possible. However, even with the additional vari-
ability in potential districting plans, the simulated elections in Pennsylvania 
still resulted in fewer than 13 seats won by the Republican Party in every case.
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Working with continuous space has several drawbacks. Often continu-
ous space is more difficult to manage, resulting in additional computational 
and mathematical complexities. When running thousands of simulations, the 
computation time becomes a limiting factor for the scalability of the method. 
Additionally, the lines of the generated districts do not follow any existing 
townships, census blocks, or geographic features within the state. Therefore, 
it is not recommended to use our continuous space algorithm for generating a 
districting plan that would be used in a real-world election. Our method does 
not produce an “optimal” plan but instead creates a large collection of reason-
able plans. Thus, the results from the simulations should be used for com-
parison purposes only. Although our method is computationally expensive 
and more difficult to implement in practice, the results are similar to existing 
versions in discrete space that are more computationally feasible such as that 
of Chen and Cottrell (2016). Thus, a primary contribution of our findings is 
to support existing methods of generating random redistricting plans that use 
preexisting discrete spatial blocks that are generally more practical to imple-
ment, have more readily available voting data, and are more computationally 
feasible to simulate realizations from than continuous space methods.

Using voter registration data also has several drawbacks. Often voter reg-
istration databases are out of date. In addition, the need for anonymity limits 
the ability to use important covariates in modeling election results. Simulat-
ing election results, in general, can be a very difficult problem. Each election is 
different and inherently draws a different subset of voters. Since each election 
occurs in particular circumstances and with particular candidates, using data 
from a previous election to predict voter turnout may yield different results. In 
the future, we hope to improve the regression model for voter turnout. Several 
characteristics available in other data sets, such as the American Community 
Survey (ACS), could potentially improve the performance of a simulated elec-
tion. In future work, the additional information available in the ACS data set 
could be combined with the exact spatial location available in Pennsylvania 
voter registration data to yield a more powerful tool for predicting election 
results. Combining ACS data and results from previous elections with voter 
registration data may allow us to simulate elections by predicting voter deci-
sions (who they will vote for) rather than relying on a voter’s registered party 
and predicting only voter turnout. Further, the model for voter turnout can 
be improved to incorporate spatial dependence in voter locations. In this 
case, our simulation results were robust across different models for predict-
ing voter turnout, so basic logistic regression was used for simplicity. In the 
future, methods from spatial statistics, such as spatial logistic regression and 
spatial autoregressive models (Bivand, Pebesma, and Gómez-Rubio 2008), 
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can be used to analyze voter turnout data for various elections, thus enabling 
improved predictions of voter behavior.

Various options exist for assessing the simulated districting plans and 
election results once they have been generated. The exact measure for com-
parison can be selected on a case-by-case basis, but several options include: 
number of seats won, compactness (Fan et al. 2015), graph compactness (Dube 
and Clark 2016), convexity (Hodge, Marshall, and Patterson 2010; Miller 2007; 
Powell, Clark, and Dube 2017), and the efficiency gap (Stephanopoulos and 
McGhee 2015). In the future, it would be useful to calculate several of these 
measures in Pennsylvania to provide a mathematically rigorous baseline value 
for when a districting plan is extreme enough to conclude that gerrymander-
ing has occurred.

Appendix 1. Inhomogeneous Poisson Point Process

A spatial point process consists of a region of interest and spatial locations 
within that region of interest. The spatial location of points is considered the 
random component. Typically, the number of points is considered random 
as well. One example of a spatial point process is the locations of trees in a 
forest. The region of interest is the area within the borders of the forest and 
the random points are spatial coordinates of the locations of the trees. One 
important aspect of a spatial point process is that the location of the point 
is random; if the location of the point is fixed, a different branch of spatial 
statistics would be necessary.

The Poisson point process (Miles 1970) is one of the most basic examples 
of a spatial point process. In a Poisson point process, the number of points 
observed is random and follow a Poisson distribution. The Poisson distri-
bution is a common discrete distribution used in statistics for count data. 
Conditional on the number of points, in a basic (homogenous) Poisson point 
process the points are randomly spread uniformly throughout the region of 
interest. This means that each point has an equal probability of being found in 
any subsection of the space of equal size. In addition, for a basic Poisson point 
process the location of each point is independent of all other points.

The population density varies for different areas of Pennsylvania. There-
fore, a homogenous point process would not be an accurate tool for repre-
senting voter distribution. Instead, we use the inhomogeneous Poisson point 
process (Bivand, Pebesma, and Gómez-Rubio 2008). The inhomogeneous 
Poisson point process incorporates an additional feature called an intensity 
surface. The intensity surface gives the relative probability of finding random 
points in a particular location. Subregions that have a higher intensity are 
more likely to have a higher number of points. For example, a region with a 
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higher population density within a state, such as a large city, can correspond 
to a spatial location with a higher relative intensity surface than a region with 
a lower population density, such as a rural town. Thus, we use an intensity 
surface with larger values in urban areas (such as Philadelphia and Pittsburgh) 
and lower values in rural areas. The intensity surface of Pennsylvania can be 
estimated using the density of voter distributions presented in Figure 1.

After estimating the intensity surface for voter locations, we can generate 
an inhomogeneous Poisson point process. A random point process with 2,000 
points is generated using the Spatstat package (Baddeley and Turner 2005) in 
R. The number of points can be adjusted for computational efficiency. Dif-
ferent numbers of points were considered and the resulting random districts 
were similar as long as the number of points was sufficiently large. If too few 
points were selected, the algorithm did not converge, and as the number of 
points was increased the computation time for the remainder of the algorithm 
increased significantly.

Appendix 2. Voronoi Tessellation

A Poisson point process can be combined with Voronoi tessellation to gener-
ate a random collection of shapes or tiles that span the original region of inter-
est (Hinde and Miles 1980). Once the random points in the state have been 
selected, a Voronoi tessellation is used to split the area of Pennsylvania into 
tiles. Voronoi tessellations have been proposed to find an “optimal” districting 
plan (Miller 2007; Ricca, Scozzari, and Simeone 2008) but, to our knowledge, 
have not been combined with random simulations to measure gerrymander-
ing. For a collection of N points, a Voronoi tessellation assigns each location in 
space to the nearest point using Euclidean distance. The result is a collection 
of N tiles that, when combined, make up the entire original area. An example 
of a Voronoi tessellation is given in Figure 2.

Figure 2. Sample Voronoi Tessellation. (Source: Authors.)
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Once the tiles have been selected, each voter in our random sample is 
assigned to a tile based on their spatial location. The total number of voters in 
each tile is then calculated. Tiles with fewer than 6 residents (from our sample 
of 10,400) are discarded by removing the associated spatial point and recom-
puting the tessellation. Other minimum resident-size cutoffs are considered 
and yield similar results with significantly different computation times. A 
large number of points are typically disregarded in this manner, making it 
easier to assign tiles to districts. The total number of points in the updated 
point process ranges from around 500 to 570. The mean number of tiles is 
536.9 and the standard deviation is 11.8.

Appendix 3. Assigning the Tiles to Districts

Once the original Voronoi tessellation has been finalized, the component tiles 
must be assigned to the 18 districts. One tile is randomly selected to belong to 
each of the districts as an original or “seed” tile. Once the 18 initial “seed” tiles 
are selected, each district is iterated through one by one. In each iteration of 
the loop, all unassigned tangent tiles to the district are input into a list and one 
tile is randomly sampled. The sampled tile is added to the district. If there are 
no tangent tiles that have not been assigned to a district, the current district 
is passed over. The algorithm continues to loop through the districts until all 
of the tiles have been assigned to one of the 18 districts.

Appendix 4. Acceptance-Rejection Algorithm  
for Tile Shifting

After each of the tiles has been assigned to a district, all of the districts are 
contiguous, but the population in each simulated district can vary substan-
tially. The districts therefore need to be adjusted to meet the equal popula-
tion criterion for congressional districts. The districts are adjusted using a 
random accept-reject algorithm. Accept-reject algorithms work in two steps. 
In the first step, a shift or adjustment is proposed. Afterward, the proposed 
change is either accepted or rejected with a probability that depends on the 
desired criterion. In this case the acceptance probability is determined by 
the congressional districting criteria. The difference in the population size 
of the relevant districts is calculated before and after the proposed shift. The 
calculated populations for the respective districts are used to calculate the 
probability that the proposed tile shift will be accepted. A random number 
generator, available in R (Ihaka and Gentleman 1996), based on the calculated 
probability, is then used to determine if the shift is accepted. If the shift is 
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accepted, the tile allocation is updated to reflect the shift. Otherwise, the shift 
is rejected and the tile allocation is not adjusted.

The following algorithm is rerun in a loop until the difference in the pro-
portions of the population in the largest and smallest of the districts is within 
1%, which is a smaller spread than the current congressional districting plan. 
The algorithm can be broken down into five main components.

1.	 Randomly sample 1 of the 18 districts.
2.	 Randomly sample 1 of the tiles on the border of that district.
3.	 Randomly sample 1 of the districts that the selected tile is adjacent 

to, and propose moving that tile to the new district.
4.	 Calculate the acceptance probability (p) for the proposed shift:

a.	 Test whether the proposed shift would create any noncontigu-
ous districts. (This is done via an N x N adjacency matrix.)

b.	 If the tile creates noncontiguous districts, set the acceptance 
probability to 0.

c.	 If the tile preserves district contiguity, calculate the acceptance 
probability based on the change in population difference in the 
districts before and after the proposed shift.

5.	 Accept the proposed shift with probability p.

After the algorithm is completed, the tiles have been shifted so that they 
are contiguous and the variance in population between the largest and small-
est districts is less than 1%.
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